Abstract
Due to the complex and changing drilling conditions and the large scale of logging data, it is extremely difficult to process the data in real time and identify dangerous working conditions. Based on the multi-classification intelligent algorithm of Stacking model fusion, the 24 h actual working conditions of an XX well are classified and identified. The drilling conditions are divided into standpipe connection, tripping out, tripping in, Reaming, back Reaming, circulation, drilling, and other conditions. In the Stacking fusion model, the accuracy of the integrated model and the base learner is compared, and the confusion matrix of the drilling multi-condition recognition results is output, which verifies the effectiveness of the Stacking model fusion. Based on the variation in the parameter characteristics of different working conditions, a real-time working condition recognition diagram of the classification results is drawn, and the adaptation rules of the Stacking fusion model under different working conditions are summarized. The stacking model fusion method has a good recognition effect under the standpipe connection condition, tripping in condition, and drilling condition. These three conditions’ accuracy, recall rate, and F1 value are all above 90%. The stacking model fusion method has a relatively poor recognition effect on ‘other conditions‘, and the accuracy rate, recall rate, and F1 value reach less than 80%.
Funder
National Key Research and Development Program of China
National Natural Science Foundation
Natural Science Foundation of Shandong Province
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献