Overview of Common Thermophysical Property Modelling Approaches for Cryogenic Fluid Simulations at Supercritical Conditions

Author:

Madana Gopal Jaya VigneshORCID,Morgan Robert,De Sercey GuillaumeORCID,Vogiatzaki Konstantina

Abstract

Computational Fluid Dynamics (CFD) frameworks of supercritical cryogenic fluids need to employ Real Fluid models such as cubic Equations of State (EoS) to account for thermal and inertial driven mechanisms of fluid evolution and disintegration. Accurate estimation of the non-linear variation in density, thermodynamic and transport properties is required to computationally replicate the relevant thermo and fluid dynamics involved. This article reviews the availability, performance and the implementation of common Real Fluid EoS and data-based models in CFD studies of supercritical cryogenic fluids. A systematic analysis of supercritical cryogenic fluid (N2, O2 and CH4) thermophysical property predictions by cubic (PR and SRK) and non-cubic (SBWR) Real Fluid EoS, along with Chung’s model, reveal that: (a) SRK EoS is much more accurate than PR at low temperatures of liquid phase, whereas PR is more accurate at the pseudoboiling region and (b) SBWR EoS is more accurate than PR and SRK despite requiring the same input parameters; however, it is limited by the complexity in thermodynamic property estimation. Alternative data-based models, such as tabulation and polynomial methods, have also been shown to be reliably employed in CFD. At the end, a brief discussion on the thermophysical modelling of cryogenic fluids affected by quantum effects is included, in which the unsuitability of the common real fluid EoS models for the liquid phase of such fluids is presented.

Funder

UK Engineering and Physical Science Research Council

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3