Approach for a Global Route-Based Energy Management System for Electric Vehicles with a Hybrid Energy Storage System

Author:

Nguyen TuyenORCID,Rauch YannickORCID,Kriesten Reiner,Chrenko DanielaORCID

Abstract

The usage of batteries and supercapacitors in the field of electric vehicles is becoming increasingly prominent in both research and development. Due to the complementary advantages of the two systems, high energy density, and high power density, a combined battery/supercapacitor system offers potential. To effectively utilise the potential of such a hybrid energy storage system (HESS), one requires an intelligent energy management system (EMS). The EMS is responsible for controlling the electrical power between the battery and the supercapacitor in such a way that the required power can be optimally distributed at all times (currently and in the future). For this purpose, the energy management system utilises information on the driving route and, based on this information, shall calculate a global strategy for the continuous power distribution. The controlled power distribution should take place in real time and be robust against discrepancies so that unpredictable or unreliably predictable events do not significantly influence the functionality. For the implementation of the concept, a rule-based power distribution is implemented in combination with a predictive energy management. Here, the energy management is combined with a rule-based strategy calculation based on data on the route to be driven with a global optimization for the calculation of a route-specific strategy. Depending on the selected objective, the increase in energy efficiency, or lifetime, the operation of the power control is optimised. Due to the functional separation, the continuous power control can operate in real time, while more computational time can be spent on the calculations of the power management strategy, which accordingly does not need to be executed in real time. The results show that by using the presented EMS, especially in combination with a route-specific parameterisation, a significant effect on the energy efficiency and/or battery lifetime can be achieved. The average battery energy consumption can be reduced by up to 9.14% on urban routes. Regarding battery lifetime, the average battery usage can be reduced up to 13.35% and the battery energy losses even up to 62.72%.

Funder

EIPHI Graduate School

Region Bourgogne Franche-Comté

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3