Decarbonisation Pathways for the Finishing Line in a Steel Plant and Their Implications for Heat Recovery Measures

Author:

Beck AntonORCID,Unterluggauer JulianORCID,Helminger Franz,Solís-Gallego Irene

Abstract

Steel production is one of the biggest emitters of greenhouse gas in the industrial sector with about 8% of total global CO2 emissions. Although the majority of emissions can be attributed to primary steel production, there is also potential for reducing CO2 emissions in downstream steel processing. Large industrial furnaces, which are necessary for heating steel, are currently primarily fired with natural gas and by-product gases from primary steel production, offering great potential for heat recovery measures from exhaust gases. However, switching to alternative climate-neutral fuels could change this potential and thus jeopardize the economic viability of heat recovery measures. In the present work, it was therefore examined to what extent a change in energy sources in industrial furnaces affects the potential use of heat recovery in steel processing. For this purpose, an optimization model was used that takes into account heat recovery by means of direct heat transfer, heat pumps and heat distribution systems. Potential future changes in energy supply for industrial furnaces were examined using different storylines. Two different energy price scenarios were also considered to address uncertain developments in energy markets. The results show that heat recovery is a cost-effective and definitely recommendable measure. Switching to alternative fuels has little impact on the use of heat recovery. Electrification and thus the elimination of flue gas, on the other hand, greatly reduces the potential for heat recovery.

Funder

European Union

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference30 articles.

1. European Commision (2020). State of the Union 2020: EU Climate Target Plan 2030: Building a Modern, Sustainable and Resilient Europe.

2. IEA—International Energy Agency (2020). Iron and Steel Technology Roadmap.

3. Decarbonising the iron and steel sector for a 2 °C target using inherent waste streams;Sun;Nat. Commun.,2022

4. The European Steel Association—EUROFER (2021). European Steel in Figures 2021, The European Steel Association.

5. Draxler, M., Tobias Kempken, T.H., Jean-Christophe Pierret, J.B., Antonello Di Donato, M.D.S., and Chuan, W. (2022, November 13). Available online: https://www.estep.eu/assets/Uploads/210308-D1-2-Assessment-and-roadmapping-of-technologies-Publishable-version.pdf.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3