Comparison of Forecasting Energy Consumption in East Africa Using the MGM, NMGM, MGM-ARIMA, and NMGM-ARIMA Model

Author:

Han Xinyu,Li Rongrong

Abstract

Forecasting energy demand is the basis for sustainable energy development. In recent years, the new discovery of East Africa’s energy has completely reversed the energy shortage, having turned the attention of the world to the East African region. Systematic research on energy forecasting in Africa, particularly in East Africa, is still relatively rare. In view of this, this study uses a variety of methods to comprehensively predict energy consumption in East Africa. Based on the traditional grey model, this study: (1) Integrated the power coefficient and metabolic principles, and then proposed non-linear metabolic grey model (NMGM) forecasting model; (2) Used Auto Regressive Integrated Moving Average Model (ARIMA) for secondary modeling, and then developed a metabolic grey model-Auto Regressive Integrated Moving Average Model (MGM-ARIMA) and non-linear metabolic grey model-Auto Regressive Integrated Moving Average Model (NMGM-ARIMA) combined models. In terms of the prediction interval, the data for 2000–2017 is a fit to the past stage, while the data for 2018–2030 is used for the prediction of the future stage. To measure the effect of the prediction, the study used the average relative error indicator to evaluate the accuracy of different models. The results indicate that: (1) Mean relative errors of NMGM, MGM-ARIMA, and NMGM-ARIMA are 2.9697%, 2.0969%, and 1.4654%, proving that each prediction model is accurate; (2) Compared with the single model, the combined model has higher precision, confirming the superiority and feasibility of model combination. After prediction, the conclusion shows that East Africa’s primary energy consumption will grow by about 4 percent between 2018 and 2030. In addition, the limitation of this study is that only single variable are considered.

Funder

Humanities and Social Science Fund of Ministry of Education of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3