Optimization of Solar Panel Orientation Considering Temporal Volatility and Scenario-Based Photovoltaic Potential: A Case Study in Seoul National University

Author:

Oh MyeongchanORCID,Park Hyeong-DongORCID

Abstract

University campuses accommodate large numbers of people and are suitable places to organize a microgrid. The solar potential in the university area is estimated and the optimal orientation of solar panels is presented in this study. The optimal orientation is analyzed considering temporal volatility to increase the stability of the grid. Several variables are selected and scenarios are designed to consider various investments and technologies. Scenario-specific photovoltaic potentials were estimated using Geographic Information Systems analysis technology. Analysis of temporal volatility was conducted based on the difference between demand and supply of electricity. Optimal panel orientations were presented according to project objectives, such as highest efficiency or low volatility. As a result, the total potential of the study area was tens to hundreds of GWh/year depending on the scenario. The university has an advantage in hourly volatility, but has some problems in monthly volatility. The optimal orientation varies according to objectives and solar power supply ratio. The results of this study are expected to help researchers and technicians in the solar energy industry and assist in urban planning.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference46 articles.

1. What the Duck Curve Tells Us about Managing a Green Grid,2013

2. Microgrid/Macrogrid Energy Exchange: A Novel Market Structure and Stochastic Scheduling

3. The University Microgrid: Why Clean Energy and Campuses Are a Good Fit;Maloney,2017

4. List of 45 Sustainable Campus Networks And Green University Initiatives Worldwidehttp://rootability.com/sustainable-campus-and-green-university-networks-and-initaitives/

5. Optimization of tilt angle for solar panel: Case study for Madinah, Saudi Arabia

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3