Wireless Sliding MPPT Control of Photovoltaic Systems in Distributed Generation Systems

Author:

Martin Aranzazu D.ORCID,Cano Juan M.,Herrera Reyes S.,Vazquez Jesus R.

Abstract

The aim of a photovoltaic (PV) system’s control is the extraction of the maximum power even if the irradiance, the temperature, or the parameters vary. To do that, a maximum power point tracking (MPPT) algorithm is required. In this work, a sliding control is designed to regulate the PV modules’ output voltage and make the panel work at the maximum power voltage. This control is selected to improve the robustness, the transient dynamic response, and the time response of the system under changeable environmental conditions, adjusting the duty cycle of the DC/DC converter. The DC/DC converter connected to the PV module output is a buck-boost converter. This configuration presents the advantage of providing voltages lower or higher than supplied by the photovoltaic modules to provide the required voltage to the load (including the voltages ceded by telecommunication loads, amongst others). In addition, a remote sliding control is developed to make the global supervision of the PV system in distributed generation grids. The designed algorithm is tested in an experimental platform, both locally and remotely connected to the base station, to prove the effectiveness of the sliding control. Thus, the communication effect in the control is also analyzed.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Wireless Diagnosis and Control of DC–DC Converter for Off-Grid Photovoltaic Systems;Sustainability;2024-04-13

2. Centralized MPPT based on Sliding Mode Control and XBee 900 MHz for PV systems;International Journal of Electrical Power & Energy Systems;2023-11

3. PV Tracking Systems;Energies;2023-03-16

4. Complete and versatile remote controller for PV systems;International Journal of Electrical Power & Energy Systems;2022-11

5. Comparative Review of MPPT Algorithms;2021 IEEE 48th Photovoltaic Specialists Conference (PVSC);2021-06-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3