Design Procedure of a Frequency Reconfigurable Metasurface Antenna at mmWave Band

Author:

Ledimo Bokamoso KebathoORCID,Moaro PakoORCID,Ramogomana ReubenORCID,Mosalaosi ModisaORCID,Basutli BokamosoORCID

Abstract

The use of the millimeter wave (mmWave) spectrum and further exploration of sub-mmWave has led to a new era in wireless communication, as the need for higher data rates grows. High frequencies, on the other hand, incur a higher path loss, requiring an increase in antenna gain requirements. Metasurfaces, which emerge as a promising technology for mitigating path loss effects by utilizing two dimensional (2D) arrays of engineered meta-atoms resembling metamaterials that control the surface’s electromagnetic response have been introduced. Currently, metasurfaces are primarily considered as passive reflecting devices in wireless communications, assisting conventional transceivers in shaping propagation environments. This paper presents an alternative application of metasurfaces for wireless communications as active reconfigurable antennas for next generation transceivers. A framework that demonstrates the design process of a metasurface antenna structure was introduced and further used to design a 4 × 4 array and its reconfigurable counterpart. In contrast to conventional phased array antennas, a reconfigurable metasurface (RMS) antenna does not require phase-shifters and amplifiers, which leads to reduced cost. Instead, each individual element achieves reconfigurability by shifting the resonating frequency using semiconductor devices such as PIN diodes. The proposed metasurface antenna is designed to operate at a frequency of 28 GHz and 40 GHz. In addition, an increase in gain and directivity was observed when diodes were added to the metasurface antenna array. However, due to PIN diodes being connected to metallic strips in the metasurface antenna array, loss can occur due to power dissipation, which results in a decrease in radiation efficiency.

Funder

Botswana International University of Science and Technology

Publisher

MDPI AG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3