An IoT-Based Encapsulated Design System for Rapid Model Identification of Plant Development

Author:

Novak HrvojeORCID,Ratković Marko,Cahun Mateo,Lešić VinkoORCID

Abstract

Actual and upcoming climate changes will evidently have the largest impact on agriculture crop cultivation in terms of reduced harvest, increased costs, and necessary deviations from traditional farming. The aggravating factor for the successful applications of precision and predictive agriculture is the lack of granulated historical data due to slow, year-round cycles of crops, as a prerequisite for further analysis and modeling. A methodology of plant growth observation with the rapid performance of experiments is presented in this paper. The proposed system enables the collection of data with respect to various climate conditions, which are artificially created and permuted in the encapsulated design, suitable for further correlation with plant development identifiers. The design is equipped with a large number of sensors and connected to the central database in a computer cloud, which enables the interconnection and coordination of multiple geographically distributed devices and related experiments in a remote, autonomous, and real-time manner. Over 40 sensors and up to 24 yearly harvests per device enable the yearly collection of approximately 750,000 correlated database entries, which it is possible to independently stack with higher numbers of devices. Such accumulated data is exploited to develop mathematical models of wheat in different growth stages by applying the concepts of artificial intelligence and utilizing them for the prediction of crop development and harvest.

Funder

European Union: European Regional Development Fund

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3