Enhanced Diffractive Circular Dichroism from Stereoscopic Plasmonic Molecule Array

Author:

Gu Liangliang123,Shu Rong4,Liu Xiangfeng4ORCID,Hu Haifeng123ORCID,Zhan Qiwen123ORCID

Affiliation:

1. School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China

2. Zhangjiang Laboratory, Shanghai 201204, China

3. Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China

4. Key Laboratory of Space Active Opto-Electronics Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China

Abstract

Artificial nanostructures with large optical chiral responses have been intensively investigated recently. In this work, we propose a diffractive circular dichroism enhancement technique using stereoscopic plasmonic molecule structures. According to the multipole expansion analysis, the z-component of the electric dipole becomes the dominant chiral scattering mechanism during the interaction between an individual plasmonic molecule and the plane wave at a grazing angle. For a periodical structure with the designed plasmonic molecule, large diffractive circular dichroism can be obtained, which can be associated with the Wood–Rayleigh anomaly. Such a diffractive circular dichroism enhancement is verified by the good agreement between numerical simulations and experimental results. The proposed approach can be potentially used to develop enhanced spectroscopy techniques to measure chiral information, which is very important for fundamental physical and chemical research and bio-sensing applications.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanghai

Zhangjiang Laboratory

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3