Anti-Icing Property of Superhydrophobic Nanostructured Brass via Deposition of Silica Nanoparticles and Nanolaser Treatment

Author:

Hussain Saqib1,Muangnapoh Tanyakorn2ORCID,Traipattanakul Bhawat1ORCID,Lekmuenwai Milin1

Affiliation:

1. School of Manufacturing Systems and Mechanical Engineering, Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani 12120, Thailand

2. National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand

Abstract

Ice accumulation on brass surfaces can lead to heat transfer inefficiency, equipment degradation, and potential accidents. To address this issue, superhydrophobic surface technology is utilized. This work aims to develop superhydrophobic nanostructured brass surfaces using the combination of nanolaser ablation and the deposition of silica nanoparticles to achieve the anti-icing property. Four distinct types of brass surfaces namely, the bare surface (BS), the lasered surface (LS), the coated surface (CS), and the coated-lasered surface (CLS) were prepared. The anti-icing performances of the fabricated samples including the effects of the surface structure, the droplet size, and the surface temperature were investigated and evaluated. The results showed that the delayed icing time increased with the increases in the apparent contact angle, the droplet size, and the surface temperature. When the apparent contact angle increased, the contact area between the droplet and the cooling substrate reduced, leading to the longer delayed icing time. With the deposition of silica nanoparticles and nanolaser treatment, CLS achieved the greatest apparent contact angle of 164.5°, resulting in the longest delayed icing time under all experimental conditions. The longest delayed icing time on CLS recorded in this study was 2584 s, which was 575%, 356%, and 27% greater than those on BS, LS, and CS, respectively. The study also revealed that the surface structure played a more crucial role in achieving the anti-icing property when compared to the surface temperature or the droplet size. The shortest delayed icing time on CLS at the lowest surface temperature and at the smallest droplet size was longer than those on BS and LS at all conditions. The results were also discussed in relation to a heat transfer model. The findings of this research can serve as an avenue for advancing knowledge on heat transfer enhancement and energy efficiency.

Funder

Thammasat University Research Fund

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3