The HIE-FDTD Method for Simulating Dispersion Media Represented by Drude, Debye, and Lorentz Models

Author:

Chen Juan12,Mou Chunhui1

Affiliation:

1. School of Information and Communications Engineering, Xi’an Jiaotong University, Xi’an 710049, China

2. Shenzhen Research School, Xi’an Jiaotong University, Shenzhen 518057, China

Abstract

The hybrid implicit–explicit finite-difference time-domain (HIE-FDTD) method is a weakly conditionally stable finite-difference time-domain (FDTD) method that has attracted much attention in recent years. However due to the dispersion media such as water, soil, plasma, biological tissue, optical materials, etc., the application of the HIE-FDTD method is still relatively limited. Therefore, in this paper, the HIE-FDTD method was extended to solve typical dispersion media by combining the Drude, Debye, and Lorentz models with hybrid implicit–explicit difference techniques. The advantage of the presented method is that it only needs to solve a set of equations, and then different dispersion media including water, soil, plasma, biological tissue, and optical materials can be analyzed. The convolutional perfectly matched layer (CPML) boundary condition was introduced to truncate the computational domain. Numerical examples were used to validate the absorbing performance of the CPML boundary and prove the accuracy and computational efficiency of the dispersion HIE-FDTD method proposed in this paper. The simulated results showed that the dispersion HIE-FDTD method could not only obtain accurate calculation results, but also had a much higher computational efficiency than the finite-difference time-domain (FDTD) method.

Funder

National Key Research and Development Program of China

Technology Program of Shenzhen

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3