Optoelectrical Properties of Transparent Conductive Films Fabricated with Ag Nanoparticle-Suspended Emulsion under Various Formulations and Coating Conditions

Author:

Kim Seong Hwan1,Park Geunyeop1,Kim Kyu-Byung2,Shin Yong-Woo2,Jung Hyun Wook1ORCID

Affiliation:

1. Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea

2. Dof Inc., Hwaseong-si 18468, Republic of Korea

Abstract

Transparent conductive films (TCFs) were fabricated through bar-coating with a water-in-toluene emulsion containing Ag nanoparticles (AgNPs). Morphological changes in the self-assembled TCF networks under different emulsion formulations and coating conditions and the corresponding optoelectrical properties were investigated. In preparing various emulsions, the concentration of AgNPs and the water weight fraction were important factors for determining the size of the water droplets, which plays a decisive role in controlling the optoelectrical properties of the TCFs affected by open cells and conductive lines. An increased concentration of AgNPs and decreased water weight fraction resulted in a decreased droplet size, thus altering the optoelectrical properties. The coating conditions, such as coating thickness and drying temperature, changed the degree of water droplet coalescence due to different emulsion drying rates, which also affected the final self-assembled network structure and optoelectrical properties of the TCFs. Systematically controlling various material and process conditions, we explored a coating strategy to enhance the optoelectrical properties of TCFs, resulting in an achieved transmittance of 86 ± 0.2%, a haze of 4 ± 0.2%, and a sheet resistance of 35 ± 2.8 Ω/□. TCFs with such optimal properties can be applied to touch screen fields.

Funder

Ministry of Trade, Industry, and Energy

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3