Rebuildable Silver Nanoparticles Employed as Seeds for Synthesis of Pure Silver Nanopillars with Hexagonal Cross-Sections under Room Temperature

Author:

Yang Pengfei1,Liang Yu12,Zhang Daxiao3,Ge Shaobo1,Li Shijie1,Liang Xichao4,Zhang Jin1ORCID,Xi Yingxue1ORCID,Zhang Yan1,Liu Weiguo1ORCID

Affiliation:

1. Shaanxi Province Key Laboratory of Thin Films Technology and Optical Test, Xi’an Technological University, Xi’an 710032, China

2. State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China

3. School of Physics and Technology, Wuhan University, Wuhan 430072, China

4. Research and Application of Regenerative Cellulose Fiber Key Laboratory of Sichuan Province, YiBin Grace Group Co., Ltd., Yibin 644000, China

Abstract

Silver nanopillars with strong plasmonic effects are used for localized electromagnetic field enhancement and regulation and have wide potential applications in sensing, bioimaging, and surface-enhanced spectroscopy. Normally, the controlled synthesis of silver nanopillars is mainly achieved using heterometallic nanoparticles, including Au nanobipyramids and Pd decahedra, as seeds for inducing nanostructure growth. However, the seed materials are usually doped in silver nanopillar products. Herein, the synthesis of pure silver nanopillars with hexagonal cross-sections is achieved by employing rebuildable silver nanoparticles as seeds. An environmentally friendly, stable, and reproducible synthetic route for obtaining silver nanopillars is proposed using sodium dodecyl sulfate as the surface stabilizer. Furthermore, the seed particles induce the formation of regular structures at different temperatures, and, specifically, room temperature is beneficial for the growth of nanopillars. The availability of silver nanoparticle seeds using sodium alginate as a carrier at different temperatures was verified. A reproducible method was developed to synthesize pure silver nanopillars from silver nanoparticles at room temperature, which can provide a strategy for designing plasmonic nanostructures for chemical and biological applications.

Funder

Science and Technology on Applied Physical Chemistry Laboratory

Key R&D program of the Science and Technology Department of Shaanxi Province

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3