Physicochemical Properties of Organic Molecular Ferroelectric Diisopropylammonium Chloride Thin Films

Author:

Alsaad Ahmad M.1ORCID,Al-Bataineh Qais M.12,Qattan Issam A.3,Aljarrah Ihsan A.1ORCID,Bani-Salameh Areen A.1,Ahmad Ahmad A.1ORCID,Albiss Borhan A.1ORCID,Telfah Ahmad24ORCID,Sabirianov Renat F.5

Affiliation:

1. Department of Physics, Jordan University of Science & Technology, P.O. Box 3030, Irbid 22110, Jordan

2. Leibniz Institut für Analytische Wissenschaften-ISAS-e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany

3. Department of Physics, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates

4. Nanotechnology Center for Scientific Research, The University of Jordan, Amman 11942, Jordan

5. Department of Physics, University of Nebraska at Omaha, Omaha, NE 68182, USA

Abstract

We fabricated ferroelectric films of the organic molecular diisopropylammonium chloride (DIPAC) using the dip-coating technique and characterized their properties using various methods. Fourier-transform infrared, scanning electron microscopy, and X-ray diffraction analysis revealed the structural features of the films. We also performed ab-initio calculations to investigate the electronic and polar properties of the DIPAC crystal, which were found to be consistent with the experimental results. In particular, the optical band gap of the DIPAC crystal was estimated to be around 4.5 eV from the band structure total density-of-states obtained by HSE06 hybrid functional methods, in good agreement with the value derived from the Tauc plot analysis (4.05 ± 0.16 eV). The films displayed an island-like morphology on the surface and showed increasing electrical conductivity with temperature, with a calculated thermal activation energy of 2.24 ± 0.03 eV. Our findings suggest that DIPAC films could be a promising alternative to lead-based perovskites for various applications such as piezoelectric devices, optoelectronics, sensors, data storage, and microelectromechanical systems.

Funder

Jordan University of Science and Technology

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3