Amplifying the Output of a Triboelectric Nanogenerator Using an Intermediary Layer of Gallium-Based Liquid Metal Particles

Author:

Kim Jong Hyeok1,Kim Ju-Hyung2ORCID,Seo Soonmin1ORCID

Affiliation:

1. Department of Bionano Technology, Gachon University, Seongnam 13120, Republic of Korea

2. Department of Chemical Engineering and Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea

Abstract

The production of energy has become a major issue in today’s world. Triboelectric nanogenerators (TENGs) are promising devices that can harvest mechanical energy and convert it into electrical energy. This study explored the use of Galinstan particles in the production of TENGs, which convert mechanical energy into electrical energy. During the curing process, the evaporation of the hexane solvent resulted in a film with varying concentrations of Galinstan particles. The addition of n-hexane during ultrasonication reduced the viscosity of the polydimethylsiloxane (PDMS) solution, allowing for the liquid metal (LM) particles to be physically pulverized into smaller pieces. The particle size distribution of the film with a Galinstan concentration of 23.08 wt.% was measured to be within a few micrometers through ultrasonic crushing. As the amount of LM particles in the PDMS film increased, the capacitance of the film also increased, with the LM/PDMS film with a 23.08% weight percentage exhibiting the highest capacitance value. TENGs were created using LM/PDMS films with different weight percentages and tested for open-circuit voltage, short-circuit current, and charge amount Q. The TENG with an LM/PDMS film with a 23.08% weight percentage had the highest relative permittivity, resulting in the greatest voltage, current, and charge amount. The use of Galinstan particles in PDMS films has potential applications in wearable devices, sensors, and biomedical fields.

Funder

National Research Foundation of Korea

Gachon University

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3