Exceptional Sorption of Heavy Metals from Natural Water by Halloysite Particles: A New Prospect of Highly Efficient Water Remediation

Author:

Stor Michał1,Czelej Kamil1ORCID,Krasiński Andrzej1ORCID,Gradoń Leon1ORCID

Affiliation:

1. Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland

Abstract

Halloysite particles, with their unique multilayer nanostructure, are demonstrated here as highly efficient and readily available sorbent of heavy metals that can be easily scaled up and used in large-scale water remediation facilities. The various methods of raw material purification were applied, and their effects were verified using techniques such as BET isotherm (determination of specific surface area and size of pores), XRF analysis (composition), and SEM imaging (determination of morphology). A series of adsorption experiments for aqueous solutions of metal ions (i.e., lead, cadmium) were carried out to quantify the sorption capacity of halloysite particles for selected heavy metals. The ability of adequately activated halloysite to efficiently remove heavy metal ions from water solutions was confirmed. The value of the zeta potential of raw and purified halloysite particles in water was determined. This enables us to understand its importance for the sorption of positively charged ions (metal, organics) at various pH values. The adsorption process conducted in the pH range of 6.0–6.5 showed significant improvement compared to the acidic conditions (pH value 3.0–3.5) and resulted in a high sorption capacity of lead ions—above 24.3 mg/g for the sulphuric acid-treated sample. The atomic scale ab initio calculations revealed a significant difference in adsorption energy between the external siloxane surface and cross-sectional interlayer surface, resulting in pronounced adsorption anisotropy. A low energy barrier was calculated for the interlayer migration of heavy metals into the halloysite interior, facilitating access to the active sites in these regions, thus significantly increasing the sorption capacity and kinetics. DFT (density functional theory) calculations supporting this study allowed for predicting the sorption potential of pure halloysite structure towards heavy metals. To confront it with experimental results, it was crucial to determine proper purification conditions to obtain such a developed structure from the mineral ore. The results show a massive increase in the BET area and confirm a high sorption potential of modified halloysite towards heavy metals.

Funder

Polish National Centre for Research and Development

High-Performance Computing facilities of the Interdisciplinary Centre for Mathematical and Computational Modeling (ICM) of the University of Warsaw

Poznan Supercomputing and Networking Center

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference44 articles.

1. Shiklomanov, I. (1993). Water in Crisis: A Guide to the World’s Fresh Water Resources, Oxford University Press.

2. (2018). United Nations World Water Assessment, UN.

3. (2021). United Nations World Water Assessment, UN.

4. (2017). United Nations World Water Assessment, UN.

5. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic;Naseri;Front. Pharmacol.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3