MOF-Derived Ultrathin NiCo-S Nanosheet Hybrid Array Electrodes Prepared on Nickel Foam for High-Performance Supercapacitors

Author:

Li Jing1,Li Jun1,Shao Meng1,Yan Yanan1,Li Ruoliu1

Affiliation:

1. School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China

Abstract

At present, binary bimetallic sulfides are widely studied in supercapacitors due to their high conductivity and excellent specific capacitance (SC). In this article, NiCo-S nanostructured hybrid electrode materials were prepared on nickel foam (NF) by using a binary metal–organic skeleton as the sacrificial template via a two-step hydrothermal method. Comparative analysis was carried out with Ni-S and Co-S in situ on NF to verify the excellent electrochemical performance of bimetallic sulfide as an electrode material for supercapacitors. NiCo-S/NF exhibited an SC of 2081 F∙g−1 at 1 A∙g−1, significantly superior to Ni-S/NF (1520.8 F∙g−1 at 1 A∙g−1) and Co-S/NF (1427 F∙g−1 at 1 A∙g−1). In addition, the material demonstrated better rate performance and cycle stability, with a specific capacity retention rate of 58% at 10 A∙g−1 than at 1 A∙g−1, and 75.7% of capacity was retained after 5000 cycles. The hybrid supercapacitor assembled by NiCo-S//AC exhibited a high energy density of 25.58 Wh∙kg−1 at a power density of 400 W∙kg−1.

Funder

Natural Science Foundation of Shanghai, China

Class III Peak Discipline of Shanghai-Materials Science and Engineering

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3