Multitask Learning Strategy with Pseudo-Labeling: Face Recognition, Facial Landmark Detection, and Head Pose Estimation

Author:

Lee Yongju1ORCID,Jang Sungjun1ORCID,Bae Han Byeol2ORCID,Jeon Taejae3ORCID,Lee Sangyoun1

Affiliation:

1. School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea

2. School of Computer Science and Engineering, Kunsan National University, 558 Daehak-ro, Gunsan 54150, Jeollabuk-do, Republic of Korea

3. Taejae JeonMX Division, Samsung Electronics Co., Ltd., Suwon 16677, Gyeonggi-do, Republic of Korea

Abstract

Most facial analysis methods perform well in standardized testing but not in real-world testing. The main reason is that training models cannot easily learn various human features and background noise, especially for facial landmark detection and head pose estimation tasks with limited and noisy training datasets. To alleviate the gap between standardized and real-world testing, we propose a pseudo-labeling technique using a face recognition dataset consisting of various people and background noise. The use of our pseudo-labeled training dataset can help to overcome the lack of diversity among the people in the dataset. Our integrated framework is constructed using complementary multitask learning methods to extract robust features for each task. Furthermore, introducing pseudo-labeling and multitask learning improves the face recognition performance by enabling the learning of pose-invariant features. Our method achieves state-of-the-art (SOTA) or near-SOTA performance on the AFLW2000-3D and BIWI datasets for facial landmark detection and head pose estimation, with competitive face verification performance on the IJB-C test dataset for face recognition. We demonstrate this through a novel testing methodology that categorizes cases as soft, medium, and hard based on the pose values of IJB-C. The proposed method achieves stable performance even when the dataset lacks diverse face identifications.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3