Soil Properties under Artificial Mixed Forests in the Desert-Yellow River Coastal Transition Zone, China

Author:

Li Haonian,Meng Zhongju,Dang Xiaohong,Yang Puchang

Abstract

Mixed forests play a key role in the environmental restoration of desert ecosystems and in order to address the improvement of soil properties by different mixed vegetation types. We selected four typical mixed vegetation types (including: Populus alba var. pyramidalis × Caragana korshinskii, P. pyramidalis × Hedysarum mongdicum, P. pyramidalis × Hedysarum scoparium and Hedysarum scoparium × Salix cheilophila) that have been restored for 22 years and the moving sandy land in the transition zone between the desert and the Yellow River in northern China. We compared the differences in soil properties using a total of 45 soil samples from the 0–30 cm soil layer (10 cm units). We found that revegetation had a significant positive effect on fine particles, soil nutrients, soil bulk density (SBD), and soil fractal dimension (D) values. Soil D values under different types of vegetation range from 2.16 to 2.37. Soil nutrients and fractal dimension showed highly significant or stronger negative correlations with SBD and sand and highly significant or stronger positive correlations with clay and silt. The construction of P. pyramidalis × C. korshinskii improved the soil texture better than other vegetation restoration types. Compared to the mobile sandy land, organic carbon (SOC), available phosphorus (AP), available potassium (AK), alkaline hydrolysis nitrogen (AN), total nitrogen (TN), total potassium (TK), clay, and silt increased by 161%, 238%, 139%, 30%, 125%, 69%, 208%, and 441% respectively. As mentioned above, P. pyramidalis × C. korshinskii is a suitable type of mixed vegetation restoration for the area. In addition, establishing vegetation with high nitrogen fixation rates in desert ecosystems tolerant to drought and aeolian conditions is beneficial in reversing the trend of desertification. This research will suggest vegetation building strategies for controlling desertification.

Funder

Technical Challenge Overcoming Project of Inner Mongolia Autonomous Region; Major Science And Technology Project of Inner Mongolia Autonomous Region

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3