Feasibility Study of Fluidic Sealing in Turbine Shroud

Author:

Wasilczuk FilipORCID,Flaszynski Pawel,Pyclik Lukasz,Marugi Krzysztof

Abstract

This paper analyses the methods for manufacturing turbine blades, focusing on the possibility of manufacturing slots in the region of the shroud. The reason for this analysis is the new flow control technique that can be used to limit the shroud leakage flow in a turbine—the air curtain. The air curtain uses a bypass slot to connect the upstream cavern of a shroud seal with the tip of a shroud fin. The bypass slot is an essential part of the solution, while at the same time introducing difficulties in the manufacturing process. Additionally, a parametric study on the bypass slot dimensions is performed using numerical simulations. The features of the numerical model and its validation against experimental data are presented. The parametric study includes the inlet and outlet dimensions, as well as the width of the slot. The most effective dimensions are shown, along with a possible explanation as to why they are the most effective. Interestingly, a slot that does not cover the whole span of the fin is more effective than a slot covering the whole span of the fin. This is caused by additional streamwise vortices that are created in the proximity of the bypass slot.

Funder

Narodowe Centrum Badań i Rozwoju

Publisher

MDPI AG

Subject

General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3