Experimental Study on High-Speed Milling of SiCf/SiC Composites with PCD and CVD Diamond Tools

Author:

Zhang Bin,Du Yanan,Liu Hanliang,Xin Lianjia,Yang Yinfei,Li Liang

Abstract

Silicon carbide fiber reinforced silicon carbide ceramic matrix composite (SiCf/SiC composite) is characterized by a high strength-to-density ratio, high hardness, and high temperature resistance. However, due to the brittleness of the matrix material and the anisotropy of the reinforcing phase, it is a huge challenge for machining of the material. The milling method has advantages of a high material removal rate and applicability to complex surface geometry. However, no published literature on milling of SiCf/SiC composite has been found up to now. In this paper, high-speed milling of SiCf/SiC composites was carried out under dry conditions and cryogenic cooling using liquid nitrogen, respectively. Polycrystalline diamond (PCD) and chemical vapor deposition (CVD) diamond cutting tools were used for the milling work. The cutting performance of the two kinds of tools in high-speed milling of SiCf/SiC composites was studied. Tool failure modes and mechanisms were analyzed. The effects of the cooling approach on tool wear and machined surface quality were also investigated. The experimental results showed that under identical cutting parameters and cooling approaches, the PCD tool yielded better cutting performance in terms of a longer tool life and better surface quality than that of the CVD diamond tool. In dry machining, the failure modes of the CVD diamond tool were a large area of spalling on the rake face, edge chipping and severe tool nose fracture, whereas for the PCD tool, only a small area of spalling around the tool nose took place. Compared to the dry machining, the wear magnitudes of both PCD and CVD diamond tools were decreased in cryogenic machining. Additionally, the surface quality also showed significant improvements. This study indicates that the PCD tool is highly suitable for machining of SiCf/SiC composite, and that the cryogenic method can improve machining efficiency and surface quality.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3