Potential Application of h-BNC Structures in SERS and SEHRS Spectroscopies: A Theoretical Perspective

Author:

Gil-Guerrero Sara,Otero NicolásORCID,Queizán Marta,Mandado Alonso MarcosORCID

Abstract

In this work, the electronic and optical properties of hybrid boron-nitrogen-carbon structures (h-BNCs) with embedded graphene nanodisks are investigated. Their molecular affinity is explored using pyridine as model system and comparing the results with the corresponding isolated graphene nanodisks. Time-dependent density functional theory (TDDFT) analysis of the electronic excited states was performed in the complexes in order to characterize possible surface and charge transfer resonances in the UV region. Static and dynamic (hyper)polarizabilities were calculated with coupled-perturbed Kohn-Sham theory (CPKS) and the linear and nonlinear optical responses of the complexes were analyzed in detail using laser excitation wavelengths available for (Hyper)Raman experiments and near-to-resonance excitation wavelengths. Enhancement factors around 103 and 108 were found for the polarizability and first order hyperpolarizability, respectively. The quantum chemical simulations performed in this work point out that nanographenes embedded within hybrid h-BNC structures may serve as good platforms for enhancing the (Hyper)Raman activity of organic molecules immobilized on their surfaces and for being employed as substrates in surface enhanced (Hyper)Raman scattering (SERS and SEHRS). Besides the better selectivity and improved signal-to-noise ratio of pristine graphene with respect to metallic surfaces, the confinement of the optical response in these hybrid h-BNC systems leads to strong localized surface resonances in the UV region. Matching these resonances with laser excitation wavelengths would solve the problem of the small enhancement factors reported in Raman experiments using pristine graphene. This may be achieved by tuning the size/shape of the embedded nanographene structure.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3