Predicting Vertical Ground Reaction Forces in Running from the Sound of Footsteps

Author:

Oliveira Anderson SouzaORCID,Pirscoveanu Cristina-Ioana,Rasmussen JohnORCID

Abstract

From the point of view of measurement, footstep sounds represent a simple, wearable and inexpensive sensing opportunity to assess running biomechanical parameters. Therefore, the aim of this study was to investigate whether the sounds of footsteps can be used to predict the vertical ground reaction force profiles during running. Thirty-seven recreational runners performed overground running, and their sounds of footsteps were recorded from four microphones, while the vertical ground reaction force was recorded using a force plate. We generated nine different combinations of microphone data, ranging from individual recordings up to all four microphones combined. We trained machine learning models using these microphone combinations and predicted the ground reaction force profiles by a leave-one-out approach on the subject level. There were no significant differences in the prediction accuracy between the different microphone combinations (p < 0.05). Moreover, the machine learning model was able to predict the ground reaction force profiles with a mean Pearson correlation coefficient of 0.99 (range 0.79–0.999), mean relative root-mean-square error of 9.96% (range 2–23%) and mean accuracy to define rearfoot or forefoot strike of 77%. Our results demonstrate the feasibility of using the sounds of footsteps in combination with machine learning algorithms based on Fourier transforms to predict the ground reaction force curves. The results are encouraging in terms of the opportunity to create wearable technology to assess the ground reaction force profiles for runners in the interests of injury prevention and performance optimization.

Funder

The Ministry of Culture Denmark

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3