Validation of a RANS 3D-CFD Gaseous Emission Model with Space-, Species-, and Cycle-Resolved Measurements from an SI DI Engine

Author:

Esposito StefaniaORCID,Mally Max,Cai LimingORCID,Pitsch HeinzORCID,Pischinger Stefan

Abstract

Reynolds-averaged Navier–Stokes (RANS) three-dimensional (3D) computational fluid dynamics (CFD) simulations of gaseous emissions from combustion engines are very demanding due to the complex geometry, the emissions formation mechanisms, and the transient processes inside the cylinders. The validation of emission simulation is challenging because of modeling simplifications, fundamental differences from reality (e.g., fuel surrogates), and difficulty in the comparison with measured emission values, which depend on the measuring position. In this study, detailed gaseous emission data were acquired for a spark ignition (SI) direct-injection (DI) single-cylinder engine (SCE) fueled with a toluene reference fuel (TRF) surrogate to allow precise comparison with simulations. Multiple devices in different sampling locations were used for the measurement of average emission concentration, as well as hydrocarbon (HC) cycle- and species-resolved values. A RANS 3D-CFD methodology to predict gaseous pollutants was developed and validated with this experimental database. For precise validation, the emission comparison was performed in the exact same locations as the pollutants were measured. Additionally, the same surrogate fuel used in the measurements was defined in the simulation. To focus on the emission prediction, the pressure and heat release traces were reproduced by calibrating a G-equation flame propagation model. The differences of simulation results with measurements were within 4% for CO2, while for O2 and NO, the deviations were within 26%. CO emissions were generally overestimated probably because of inaccuracies in mixture formation. For HC emissions, deviations up to 50% were observed possibly due to inexact estimation of the influence of the piston-ring crevice geometry. The reasonable prediction accuracy in the RANS context makes the method a useful framework for the analysis of emissions from SI engines, as well as for mechanism validation under engine relevant conditions.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference48 articles.

1. Emissionsvorhersage in der Entwicklung ottmotorischer EU7-Antriebe;Morcinkowski,2020

2. Thermally stratified compression ignition enabled by wet ethanol with a split injection strategy: A CFD simulation study

3. Effect of Mixture Distribution on Combustion and Emission Characteristics in a GDI Engine—A CFD Analysis;Addepalli,2017

4. Studying the Influence of Direct Injection on PCCI Combustion and Emissions at Engine Idle Condition Using Two Dimensional CFD and Stochastic Reactor Model;Cao,2008

5. Influences of second injection variations on combustion and emissions of an HCCI-DI engine: Experiments and CFD modelling

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3