Abstract
Subdural electrode arrays are used for monitoring cortical activity and functional brain mapping in patients with seizures. Until recently, the only commercially available arrays were silicone-based, whose thickness and lack of conformability could impact their performance. We designed, characterized, manufactured, and obtained FDA clearance for 29-day clinical use (510(k) K192764) of a new thin-film polyimide-based electrode array. This study describes the electrochemical characterization undertaken to evaluate the quality and reliability of electrical signal recordings and stimulation of these new arrays. Two testing paradigms were performed: a short-term active soak with electrical stimulation and a 29-day passive soak. Before and after each testing paradigm, the arrays were evaluated for their electrical performance using Electrochemical Impedance Spectroscopy (EIS), Cyclic Voltammetry (CV) and Voltage Transients (VT). In all tests, the impedance remained within an acceptable range across all frequencies. The different CV curves showed no significant changes in shape or area, which is indicative of stable electrode material. The electrode polarization remained within appropriate limits to avoid hydrolysis.
Funder
NeuroOne Medical Technologies
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献