Abstract
The photoinduced microwave complex permittivity of a highly resistive single-crystal silicon wafer was extracted from a bistatic free-space characterization test bench operating in the 26.5–40 GHz frequency band under CW optical illumination at wavelengths of 806 and 971 nm. Significant variations in the real and imaginary parts of the substrate’s permittivity induced by direct photoconductivity are reported, with an optical power density dependence, in agreement with the theoretical predictions. These experimental results open the route to ultrafast system reconfiguration of microwave devices in integrated technology by an external EMI-protected and contactless control with unprecedented performance.
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献