3D Scaffolds Fabrication via Bicomponent Microgels Assembly: Process Optimization and In Vitro Characterization

Author:

Cruz-Maya IriczalliORCID,Guarino VincenzoORCID

Abstract

In the last decade, different technological approaches have been proposed for the fabrication of 3D models suitable to evaluate in vitro cell response. Among them, electro fluid dynamic atomization (EFDA) belonging to the family of electro-assisted technologies allows for the dropping of polysaccharides and/or proteins solutions to produce micro-scaled hydrogels or microgels with the peculiar features of hydrogel-like materials (i.e., biocompatibility, wettability, swelling). In this work, a method to fabricate 3D scaffolds by the assembly of bicomponent microgels made of sodium alginate and gelatin was proposed. As first step, optical and scanning electron microscopy with the support of image analysis enabled to explore the basic properties of single blocks in terms of correlation between particle morphology and process parameters (i.e., voltage, flow rate, electrode gap, and needle diameter). Chemical analysis via ninhydrin essays and FTIR analysis confirmed the presence of gelatin, mostly retained by physical interactions into the alginate network mediated by electrostatic forces. In vitro tests confirmed the effect of biochemical signals exerted by the protein on the biological response of hMSCs cultured onto the microgels surface. Hence, it is concluded that alginate/gelatin microgels assemblies can efficiently work as 3D scaffolds able to support in vitro cells functions, thus providing a friendly microenvironment to investigate in vitro cell interactions.

Funder

AFOSR - 3D NEUROGLIA

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3