Deep Learning Based Feature Selection Algorithm for Small Targets Based on mRMR

Author:

Ren Zhigang,Ren Guoquan,Wu Dinhai

Abstract

Small target features are difficult to distinguish and identify in an environment with complex backgrounds. The identification and extraction of multi-dimensional features have been realized due to the rapid development of deep learning, but there are still redundant relationships between features, reducing feature recognition accuracy. The YOLOv5 neural network is used in this paper to achieve preliminary feature extraction, and the minimum redundancy maximum relevance algorithm is used for the 512 candidate features extracted in the fully connected layer to perform de-redundancy processing on the features with high correlation, reducing the dimension of the feature set and making small target feature recognition a reality. Simultaneously, by pre-processing the image, the feature recognition of the pre-processed image can be improved. Simultaneously, by pre-processing the image, the feature recognition of the pre-processed image can significantly improve the recognition accuracy. The experimental results demonstrate that using the minimum redundancy maximum relevance algorithm can effectively reduce the feature dimension and identify small target features.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Reference23 articles.

1. Review and Progress of Feature Selection Algorithms;Bao;Sci. Technol. Wind.,2020

2. A New Maximum Correlation Minimum Redundancy Feature Selection Algorithm;Li;J. Intell. Syst.,2021

3. A Review of Feature Selection Algorithms;Ji;Electron. Des. Eng.,2011

4. Semi-supervised classification by graph p-Laplacian convolutional networks

5. Research on Semi-Supervised Algorithms Based on Integrated Deep Learning;Gong,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3