A Normalized Model of a Microelectromechanical Relay Calibrated by Laser-Doppler Vibrometry

Author:

Marvin JessicaORCID,Jang Michael,Contreras Daniel,Spencer MatthewORCID

Abstract

This work presents a behavioral model for a microelectromechanical (MEM) relay for use in circuit simulation. Models require calibration, and other published relay models require over a dozen parameters for calibration, many of which are difficult to extract or are only available after finite element analysis. This model improves on prior work by taking advantage of model normalization, which often results in models that require fewer parameters than un-normalized models. This model only needs three parameters extracted from experiment and one dimension known from device fabrication to represent its non-contact behavior, and two additional extracted parameters to represent its behavior when in contact. The extracted parameters–quality factor, resonant frequency, and the pull-in voltage–can be found using laser Doppler vibrometry. The device dimension is the actuation gap size, which comes from process data. To demonstrate this extraction process, a series of velocity step responses were excited in MEM relays, the measured velocity responses were used to calibrate the model, and then then simulations of the model (implemented in Verilog-A) were compared against the measured data. The error in the simulated oscillation frequency and peak velocity, two values selected as figures of merit, is less than 10% across many operating voltages.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3