Bioclimatic Envelopes for Two Bat Species from a Tropical Island: Insights on Current and Future Distribution from Ecological Niche Modeling

Author:

Bandara A. P. Malsha J.ORCID,Madurapperuma Buddhika D.,Edirisinghe Gayan,Gabadage Dinesh,Botejue Madhava,Surasinghe Thilina D.ORCID

Abstract

Bats perform critical ecosystem functions, including the pollination, seed dispersal, and regulation of invertebrate populations. Yet, bat populations are declining worldwide primarily due to habitat loss and other anthropogenic stressors. Thus, studies on bat ecology, particularly on environmental determinants of bat occupancy, are paramount to their conservation. High mobility, nocturnal behavior, and roosting site selection of bats make conventional surveys challenging. Moreover, little is known about geographic distribution, habitat suitability, and responses to climate change among tropical bat species. To bridge these research gaps, we applied ecological niche modeling to two Ceylonese bat species, Kerivoula malpasi and Kerivoula picta, to map their geographic distribution. Seasonal variations in temperature and precipitation were critical environmental predictors of bat distribution in general. Southwestern lowland forests contained the most optimal habitats for the relatively wide-ranging Kerivoula picta, while the central highlands provided the most suitable habitats for the narrow-ranging Kerivoula malpasi. No tangible changes in the highly suitable habitats were evident in response to projected climate change for either species. Yet, the optimal ranges of K. malpasi can become fragmented in the future, whereas the most optimal habitats for K. picta are likely to become spatially contiguous in the future. Habitat availability or fundamental niche alone is insufficient to reliably forecast species persistence, thus we caution against considering these two bat species as resilient to climate change. Our findings will enable the conservation authorities to initiate preemptive conservation strategies, such as the establishment of landscape-scale habitat connectivity and management of buffer zones around conservation lands. We also encourage conservation authorities to employ ecological niche models to map potential species distributions and to forecast range shifts due to climate change.

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology

Reference126 articles.

1. Time’s arrow in the evolutionary development of bat flight;Adams,2013

2. How to Grow a Bat Wing;Cooper,2013

3. Family Vespertilionidae (Vesper bats);Burgin,2019

4. The evolution of echolocation in bats

5. Macroevolution in Microchiroptera: Recoupling morphology and ecology with phylogeny;Freeman;Evol. Ecol. Res.,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3