Abstract
This paper demonstrates the use of multiple low-cost inertial/magnetic sensors as a pedestrian navigation system for indoor positioning. This research looks at the problem of pedestrian navigation in a practical manner by investigating dead-reckoning methods using low-cost sensors. This work uses the estimated sensor orientation angles to compute the step size from the kinematics of a skeletal model. The orientations of limbs are represented by the tilt angles estimated from the inertial measurements, especially the pitch angle. In addition, different step size estimation methods are compared. A sensor data logging system is developed in order to record all motion data from every limb segment using a single platform and similar types of sensors. A skeletal model of five segments is chosen to model the forward kinematics of the lower limbs. A treadmill walk experiment with an optical motion capture system is conducted for algorithm evaluation. The mean error of the estimated orientation angles of the limbs is less than 6 degrees. The results show that the step length mean error is 3.2 cm, the left stride length mean error is 12.5 cm, and the right stride length mean error is 9 cm. The expected positioning error is less than 5% of the total distance travelled.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献