Mixed Linear Model of a Safety Dispatch Model in an Active Distribution Network for Source–Grid–Load Interactions

Author:

Jiang Peng1ORCID,Dong Jun1,Zhu Yuan1

Affiliation:

1. Department of Economic Management, North China Electric Power University, Beijing 102206, China

Abstract

There are a large number of plug-and-play loads in an active distribution network, such as EVs(Electric Vehicles), energy storage, solar power, etc. Due to the lack of security control methods for each terminal node and the lack of distributed power voltage control methods, the large number of loads brings a huge challenge to the security of the distribution network. At present, some regional distribution networks dominated by new energy in China have long-standing problems, such as high voltage impact and frequency flickering, which are extremely harmful to electric equipment, and the resulting load-side accidents have brought huge economic losses. Therefore, research on an optimization model of the source–grid–load interaction in the active distribution network considering the safety characteristics, especially the voltage of the system, will help to improve the quality of the grid dispatch. In this paper, the safety limits of the independent operation of a source network loaded on three sides are used as the operating constraints of the system, and the social welfare of the interaction is maximized as the goal. A joint optimization modeling after the independent solution of the three sides is used as the core means, a heuristic algorithm is used to solve the overall optimization of the whole system, a scheduling optimization model that meets the system security goals is constructed, and this model is used to guide the operation strategy of each node in the system. The Lagrangian relaxation factor is introduced for structural optimization, and finally, the simplified 36-node model of the actual power grid is used for verification. The results show that under the goal of ensuring the economy of the system, the system voltage is controlled within the specified range of the safe operation of the system, which can meet the safety needs of the interaction.

Funder

the State Grid Economic and Technological Research Institute

Publisher

MDPI AG

Subject

Automotive Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Power Grid Security Situation Awareness Method based on Deep Learning;2023 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing & Communications (GreenCom) and IEEE Cyber, Physical & Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics);2023-12-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3