Morphological Effect on the Surface Activity and Hydrogen Evolution Catalytic Performance of Cu2O and Cu2O/rGO Composites

Author:

Ramirez-Ubillus Manuel A.1ORCID,Wang Ankai2,Zou Shengli2,Chumbimuni-Torres Karin Y.2ORCID,Zhai Lei123ORCID

Affiliation:

1. NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA

2. Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA

3. Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA

Abstract

Different cuprous oxide (Cu2O) particle forms, including the octahedron, truncated octahedron, cube, and star-like forms, are synthesized through chemical reduction under different reaction conditions. The correlation between the morphology and the catalytic activity of hydrogen evolution reactions (HERs) is investigated. It is discovered that the Cu2O particles with a higher 111/100 facets (r) ratio have a higher oxidation resistance and higher activity in HER catalysis, as supported by the density functional theory (DFT) calculation results. This improvement is attributed to the fact that more Cu+ terminated atoms on facet 111 provide more active sites, as measured using their electroactive area, as well as the lower H2 adsorption energy on that facet. To enhance Cu2O’s HER performance, cuprous oxide particles are deposited on reduced graphene oxide (rGO) through a hydrothermal method. XPS and XRD show a CuO layer on the composite surface, which reduces the Cu2O corrosion in the reaction. Overall, Cu2O/rGO composites exhibit a better particle distribution, increased active sites, and improved charge separation. The best electrocatalyst in this study is the Cu2O/rGO with a star-shaped form, with an overpotential of −458 mV. Its improved performance is attributed to the presence of unsaturated active sites with a higher reactivity, such as the edges and corners. SEM studies of this composite after catalysis indicate that Cu2O undergoes structural reconstruction during the reaction and reaches a more stable structure.

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3