Increasing Hydrostatic Pressure Impacts the Prokaryotic Diversity during Emiliania huxleyi Aggregates Degradation

Author:

Tamburini ChristianORCID,Garel Marc,Barani AudeORCID,Boeuf DominiqueORCID,Bonin Patricia,Bhairy Nagib,Guasco Sophie,Jacquet Stéphanie,Le Moigne Frédéric A. C.,Panagiotopoulos Christos,Riou Virginie,Veloso Sandrine,Santinelli ChiaraORCID,Armougom FabriceORCID

Abstract

In the dark ocean, the balance between the heterotrophic carbon demand and the supply of sinking carbon through the biological carbon pump remains poorly constrained. In situ tracking of the dynamics of microbial degradation processes occurring on the gravitational sinking particles is still challenging. Our particle sinking simulator system (PASS) intends to mimic as closely as possible the in situ variations in pressure and temperature experienced by gravitational sinking particles. Here, we used the PASS to simultaneously track geochemical and microbial changes that occurred during the sinking through the mesopelagic zone of laboratory-grown Emiliania huxleyi aggregates amended by a natural microbial community sampled at 105 m depth in the North Atlantic Ocean. The impact of pressure on the prokaryotic degradation of POC and dissolution of E. huxleyi-derived calcite was not marked compared to atmospheric pressure. In contrast, using global O2 consumption monitored in real-time inside the high-pressure bottles using planar optodes via a sapphire window, a reduction of respiration rate was recorded in surface-originated community assemblages under increasing pressure conditions. Moreover, using a 16S rRNA metabarcoding survey, we demonstrated a drastic difference in transcriptionally active prokaryotes associated with particles, incubated either at atmospheric pressure or under linearly increasing hydrostatic pressure conditions. The increase in hydrostatic pressure reduced both the phylogenetic diversity and the species richness. The incubation at atmospheric pressure, however, promoted an opportunistic community of “fast” degraders from the surface (Saccharospirillaceae, Hyphomonadaceae, and Pseudoalteromonadaceae), known to be associated with surface phytoplankton blooms. In contrast, the incubation under increasing pressure condition incubations revealed an increase in the particle colonizer families Flavobacteriaceae and Rhodobacteraceae, and also Colwelliaceae, which are known to be adapted to high hydrostatic pressure. Altogether, our results underline the need to perform biodegradation experiments of particles in conditions that mimic pressure and temperature encountered during their sinking along the water column to be ecologically relevant.

Funder

Agence Nationale de la Recherche

European Regional Development Fund

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3