Abstract
Water losses in Water Distribution Networks (WDNs) are inevitable. This is due to joints interconnections, ageing infrastructure and excessive pressure at lower demand. Pressure control has been showing promising results as a means of minimising water loss. Furthermore, it has been shown that pressure information at critical nodes is often adequate to ensure effective control in the system. In this work, a greedy algorithm for the identification of critical nodes is presented. An emulator for the WDN solution is put forward and used to simulate the dynamics of the WDN. A model-free control scheme based on reinforcement learning is used to interact with the proposed emulator to determine optimal pressure reducing valve settings based on the pressure information from the critical node. Results show that flows through the pipes and nodal pressure heads can be reduced using this scheme. The reduction in flows and nodal pressure leads to reduced leakage flows from the system. Moreover, the control scheme used in this work relies on the current operation of the system, unlike traditional machine learning methods that require prior knowledge about the system.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Reference42 articles.
1. Leakage Detection and Estimation Algorithm for Loss Reduction in Water Piping Networks
2. The State of Non-Revenue Water in South Africa (2012);McKenzie,2012
3. Water Loss Control;Thornton,2008
4. Pressure management strategies for water loss reduction in large-scale water piping networks: A review;Adedeji,2018
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献