Towards High-Efficiency Buildings for Sustainable Energy Transition: Standardized Prefabricated Solutions for Roof Retrofitting

Author:

Pennacchia Elisa1ORCID,Romeo Carlo2,Zylka Claudia3ORCID

Affiliation:

1. Interdepartmental Centre for Territory, Building, Conservation and Environment, Sapienza University of Rome, Via A. Gramsci, 53-00197 Rome, Italy

2. ENEA—Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Via Anguillarese, 301-00123 Rome, Italy

3. Department of Astronautical, Electrical and Energy Engineering, Sapienza University of Rome, Via Eudossiana, 18-00184 Rome, Italy

Abstract

Enhancing energy efficiency in buildings plays a pivotal role in realizing the ambitious objective of achieving carbon neutrality by 2050, as outlined in the European Green Deal. Roofs represent the technical element most affected by energy phenomena related to heat transfer: in winter, roofing can lose up to 35% of heat, and the summer heat flux can even be higher. This paper provides a catalogue of optimized and sustainable solutions, with a specific focus on standardization and prefabrication principles, for enhancing the energy efficiency of the most prevalent types of roofs that characterize the national residential building heritage. The methodological approach that guided the research presented in this article was based on the identification and study of the most common roofings in the diverse national residential building heritage, followed by their classification according to their construction era. In the context of essential energy retrofitting of deteriorated residential building stock, 21 optimized standardized solutions have been identified. The outcome of performance evaluations of the proposed solutions allowed the implementation of a matrix that can be a valuable support for designers in selecting the most efficient precalculated and prefabricated solutions for the national residential building heritage based on energy performance and sustainability criteria.

Funder

MINISTRY OF ECONOMIC DEVELOPMENT

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3