Comparative Study of the Transmission Capacity of Grid-Forming Converters and Grid-Following Converters

Author:

Kong Bojun1,Zhu Jian1,Wang Shengbo1,Xu Xingmin1,Jin Xiaokuan2ORCID,Yin Junjie2ORCID,Wang Jianhua2

Affiliation:

1. State Grid Yangzhou Power Supply Company, Yangzhou 210019, China

2. School of Electrical Engineering, Southeast University, Nanjing 210096, China

Abstract

The development trend of high shares of renewables and power electronics has increased the demand for new energy converters in the power system, but there is a lack of systematic research on the stability of different types of converters when transmitting power, which is worth exploring in depth. In this study, the power transfer capabilities of grid-forming and grid-following converters are investigated separately through an equivalent circuit diagram and phasor diagram when connected to the grid, and a quantitative relationship between converters’ power transmission limit and short circuit ratio under static stability conditions is obtained, leading to the conclusion that, in terms of power transmission, grid-forming converters are more suitable for weak grids with high damping and low inertia, whereas grid-following converters are more suitable for strong grids with high inertia. The conclusions are further verified by constructing the converter grid-connected models for different grid strengths through the PLECS simulation platform and the real-time simulation RTBOX1 and F28379D launchpad platform.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3