Shared Driving Assistance Design Considering Human Error Protection for Intelligent Electric Wheelchairs

Author:

Chiang Hsin-Han1ORCID,You Wan-Ting2,Lee Jin-Shyan3ORCID

Affiliation:

1. Department of Vehicle Engineering, National Taipei University of Technology, Taipei 10608, Taiwan

2. IOT Software Department, Compal Electronics, Inc., Taipei 11492, Taiwan

3. Department of Electrical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan

Abstract

To effectively provide the handicapped with mobility aids, studies on the shared autonomy of robotic systems have been widely cultivated. This study proposes an adaptive shared control strategy to realize reliable and safe driving assistance on an intelligent electric wheelchair with protection against human errors. The theoretical framework of the system is analyzed by the linearized reference wheelchair model and stable characteristics of obstacle avoidance behavior can be subsequently derived according to the Lyapunov analysis and Liénard-Chipart criterion. Based on the convex analysis, the relationships between human input and robot control are investigated to determine shared control weights. As such, safety and reliability can be guaranteed. To verify the performances of the proposed approach, human errors including skill-based errors, decision errors, and violations are considered in the experiments. The experimental results based on a comprehensive study show that the proposed method is capable of enhancing driving safety and reducing operation burden in terms of the designed criteria with fluency, smoothness, and time efficiency while protecting the user from human manual errors.

Funder

National Science and Technology Council, Taiwan

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3