Capacity Optimization of Independent Microgrid with Electric Vehicles Based on Improved Pelican Optimization Algorithm

Author:

Li Jiyong1,Chen Ran1,Liu Chengye1,Xu Xiaoshuai1,Wang Yasai1

Affiliation:

1. School of Electrical Engineering, Guangxi University, Nanning 530004, China

Abstract

In order to reduce the comprehensive power cost of the independent microgrid and to improve environmental protection and power supply reliability, a two-layer power capacity optimization model of a microgrid with electric vehicles (EVs) was established that considered uncertainty and demand response. Based on the load and energy storage characteristics of electric vehicles, the classification of electric vehicles was proposed, and their mathematical models were established. The idea of robust optimization was adopted to construct the uncertain scenario set. Considering the incentive demand response, a two-layer power capacity optimization model of a microgrid was constructed. The improved pelican optimization algorithm (IPOA) was proposed as the two-layer model. In view of the slow convergence rate of the pelican optimization algorithm (POA) and its tendency to fall into the local optimum, methods such as elite reverse learning were proposed to generate the initial population, set disturbance inhibitors, and introduce Lévy flight to improve the initial population of the algorithm and enhance its global search ability. Finally, an independent microgrid was used as an example to verify the effectiveness of the proposed model and the improved algorithm. Considering that the total power capacity optimization cost of the microgrid after addition of electric vehicles was reduced by CNY 139,600, the total power capacity optimization cost of the microgrid after IOPA optimization was reduced by CNY 49,600 compared with that after POA optimization.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference29 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3