Wind Power Forecasts and Network Learning Process Optimization through Input Data Set Selection

Author:

Dutka Mateusz1ORCID,Świątek Bogusław1ORCID,Hanzelka Zbigniew1ORCID

Affiliation:

1. Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Science and Technology, 30-059 Krakow, Poland

Abstract

Energy policies of the European Union, the United States, China, and many other countries are focused on the growth in the number of and output from renewable energy sources (RES). That is because RES has become increasingly more competitive when compared to conventional sources, such as coal, nuclear energy, oil, or gas. In addition, there is still a lot of untapped wind energy potential in Europe and worldwide. That is bound to result in continuous growth in the share of sources that demonstrate significant production variability in the overall energy mix, as they depend on the weather. To ensure efficient energy management, both its production and grid flow, it is necessary to employ forecasting models for renewable energy source-based power plants. That will allow us to estimate the production volume well in advance and take the necessary remedial actions. The article discusses in detail the development of forecasting models for RES, dedicated, among others, to wind power plants. Describes also the forecasting accuracy improvement process through the selection of the network structure and input data set, as well as presents the impact of weather factors and how much they affect the energy generated by the wind power plant. As a result of the research, the best structures of neural networks and data for individual objects were selected. Their diversity is due to the differences between the power plants in terms of location, installed capacity, energy conversion technology, land orography, the distance between turbines, and the available data set. The method proposed in the article, using data from several points and from different meteorological forecast providers, allowed us to reduce the forecast error of the NMAPE generation to 3.3%.

Funder

National Center for Research and Development

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference56 articles.

1. IRENA (2021). Renewable Power Generation Costs in 2020, International Renewable Energy Agency.

2. How much wind power potential does Europe have? Examining European wind power potential with an enhanced socio-technical atlas;Enevoldsen;Energy Policy,2019

3. Jäger-Waldau, A. (2019). PV Status Report 2019, Publications Office of the European Union. European Commission, JRC Science for Policy Report.

4. Acaroğlu, H., and García Márquez, F.P. (2021). Comprehensive Review on Electricity Market Price and Load Forecasting Based on Wind Energy. Energies, 14.

5. Operation of energy hubs with storage systems, solar, wind and biomass units connected to demand response aggregators;Nasir;Sustain. Cities Soc.,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3