Passive Hydrogen Recombination during a Beyond Design Basis Accident in a Fusion DEMO Plant

Author:

D’Onorio Matteo1ORCID,Glingler Tommaso1ORCID,Mazzini Guido2,Porfiri Maria Teresa3,Caruso Gianfranco1ORCID

Affiliation:

1. Department of Astronautical Electrical and Energy Engineering (DIAEE), Sapienza University of Rome, C.so Vittorio Emanuele II 244, 00186 Rome, Italy

2. Centrum Vyzkumu Rez (CVRez), Hlavní 130, Husinec, 250 68 Řež, Czech Republic

3. UTFUS-TECN, ENEA CR. Frascati, Via Enrico Fermi, 45, 00044 Frascati, Italy

Abstract

One of the most important environmental and safety concerns in nuclear fusion plants is the confinement of radioactive substances into the reactor buildings during both normal operations and accidental conditions. For this reason, hydrogen build-up and subsequent ignition must be avoided, since the pressure and energy generated may threaten the integrity of the confinement structures, causing the dispersion of radioactive and toxic products toward the public environment. Potentially dangerous sources of hydrogen are related to the exothermal oxidation reactions between steam and plasma-facing components or hot dust, which could occur during accidents such as the in-vessel loss of coolant or a wet bypass. The research of technical solutions to avoid the risk of a hydrogen explosion in large fusion power plants is still in progress. In the safety and environment work package of the EUROfusion consortium, activities are ongoing to study solutions to mitigate the hydrogen explosion risk. The main objective is to preclude the occurrence of flammable gas mixtures. One identified solution could deal with the installation of passive autocatalytic recombiners into the atmosphere of the vacuum vessel pressure suppression system tanks. A model to control the PARs recombination capacity as a function of thermal-hydraulic parameters of suppression tanks has been modeled in MELCOR. This paper aims to test the theoretical effectiveness of the PAR intervention during an in-vessel loss of coolant accident without the intervention of the decay heat removal system for the Water-Cooled LithiumLead concept of EU-DEMO.

Funder

European Union via the Euratom Research and Training Program

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3