Numerical Investigation on the Performance of IT-SOEC with Double-Layer Composite Electrode

Author:

Shao Yan1,Li Yongwei1ORCID,Fu Zaiguo12,Li Jingfa3ORCID,Zhu Qunzhi1

Affiliation:

1. College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, China

2. Shanghai Non-Carbon Energy Conversion and Utilization Institute, Shanghai 200240, China

3. School of Mechanical Engineering & Hydrogen Energy Research Centre, Beijing Institute of Petrochemical Technology, Beijing 102617, China

Abstract

The double-layer composite electrode has attracted increasing attention in the field of intermediate-temperature solid oxide electrolysis cells (IT-SOEC). To investigate the effects of the cathode diffusion layer (CDL) and cathode functional layer (CFL) structure on performance, a three-dimensional multi-scale IT-SOEC unit model is developed. The model comprehensively considers the detailed mass transfer, electrochemical reaction and heat transfer processes. Meanwhile, percolation theory is adopted to preserve the structural characteristics and material properties of the composite electrode. The mesostructure model and the macroscopic model are coupled in the solution. The effects of the porosity of the CDL, the electrode particle size and the composition of the composite electrode in the CFL on the mass transport process and electrolysis performance of the IT-SOEC unit are analyzed. The results show that the appropriate mass flux and energy consumption in the electrode are obtained with a CDL porosity in the range of 0.3–0.5. The decrease in the electrode particle size is conducive to the improvement of the electrolysis reaction rate. The maximum reaction rate in the CFL increases by 32.64% when the radius of the electrode particle is reduced from 0.5 μm to 0.3 μm. The excellent performance can be obtained when the volume fractions of the electrode phase and electrolyte phase in the CFL tend to be uniform. This study will provide guidance for the performance optimization of IT-SOEC and further promote the development of IT-SOEC hydrogen production technology in engineering applications.

Funder

National Key R&D Program

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3