Use of Real-World FHIR Data Combined with Context-Sensitive Decision Modeling to Guide Sentinel Biopsy in Melanoma

Author:

Beckmann Catharina Lena1ORCID,Lodde Georg2,Swoboda Jessica3ORCID,Livingstone Elisabeth2ORCID,Böckmann Britta13ORCID

Affiliation:

1. Department of Computer Science, University of Applied Sciences and Arts Dortmund (FH Dortmund), 44227 Dortmund, Germany

2. Department of Dermatology, Venereology and Allergology, University Hospital Essen, 45147 Essen, Germany

3. Institute for Artificial Intelligence in Medicine, University Hospital Essen, Girardetstraße 2, 45131 Essen, Germany

Abstract

Background: To support clinical decision-making at the point of care, the “best next step” based on Standard Operating Procedures (SOPs) and actual accurate patient data must be provided. To do this, textual SOPs have to be transformed into operable clinical algorithms and linked to the data of the patient being treated. For this linkage, we need to know exactly which data are needed by clinicians at a certain decision point and whether these data are available. These data might be identical to the data used within the SOP or might integrate a broader view. To address these concerns, we examined if the data used by the SOP is also complete from the point of view of physicians for contextual decision-making. Methods: We selected a cohort of 67 patients with stage III melanoma who had undergone adjuvant treatment and mainly had an indication for a sentinel biopsy. First, we performed a step-by-step simulation of the patient treatment along our clinical algorithm, which is based on a hospital-specific SOP, to validate the algorithm with the given Fast Healthcare Interoperability Resources (FHIR)-based data of our cohort. Second, we presented three different decision situations within our algorithm to 10 dermatooncologists, focusing on the concrete patient data used at this decision point. The results were conducted, analyzed, and compared with those of the pure algorithmic simulation. Results: The treatment paths of patients with melanoma could be retrospectively simulated along the clinical algorithm using data from the patients’ electronic health records. The subsequent evaluation by dermatooncologists showed that the data used at the three decision points had a completeness between 84.6% and 100.0% compared with the data used by the SOP. At one decision point, data on “patient age (at primary diagnosis)” and “date of first diagnosis” were missing. Conclusions: The data needed for our decision points are available in the FHIR-based dataset. Furthermore, the data used at decision points by the SOP and hence the clinical algorithm are nearly complete compared with the data required by physicians in clinical practice. This is an important precondition for further research focusing on presenting decision points within a treatment process integrated with the patient data needed.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3