Evaluation of Structurally Distorted Split GFP Fluorescent Sensors for Cell-Based Detection of Viral Proteolytic Activity

Author:

Guerreiro Miguel R.ORCID,Fernandes Ana R.ORCID,Coroadinha Ana S.ORCID

Abstract

Cell-based assays are essential for virus functional characterization in fundamental and applied research. Overcoming the limitations of virus-labelling strategies while allowing functional assessment of critical viral enzymes, virus-induced cell-based biosensors constitute a powerful approach. Herein, we designed and characterized different cell-based switch-on split GFP sensors reporting viral proteolytic activity and virus infection. Crucial to these sensors is the effective—yet reversible—fluorescence off-state, through protein distortion. For that, single (protein embedment or intein-mediated cyclization) or dual (coiled-coils) distortion schemes prevent split GFP self-assembly, until virus-promoted proteolysis of a cleavable sequence. All strategies showed their applicability in detecting viral proteolysis, although with different efficiencies depending on the protease. While for tobacco etch virus protease the best performing sensor was based on coiled-coils (signal-to-noise ratio, SNR, 97), for adenovirus and lentivirus proteases it was based on GFP11 cyclization (SNR 3.5) or GFP11 embedment distortion (SNR 6.0), respectively. When stably expressed, the sensors allowed live cell biosensing of adenovirus infection, with sensor fluorescence activation 24 h post-infection. The structural distortions herein studied are highly valuable in the development of cellular biosensing platforms. Additionally highlighted, selection of the best performing strategy is highly dependent on the unique properties of each viral protease.

Funder

Fundação para a Ciência e a Tecnologia

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3