Mobility of Potentially Toxic Elements (Pb, Zn, Cd, As, Sb) in Agricultural Carbonated Soils Contaminated by Mine Tailings (Northern Tunisia): A New Kinetic Leaching Approach with Organic Acids

Author:

Achour Yosra,Souissi Radhia,Tlil Haifa,Souissi Fouad,Motelica-Heino Mikael

Abstract

The present study was carried out to show the potential of root exudates to mobilize potentially toxic elements (PTE) present in rhizospheric carbonated soils. Five different contaminated rhizospheric soils were collected from five former mining districts of northern Tunisia (Jebel Hallouf (H3), Sidi-Bouaouane (B1), Jebel Ghozlane (G7), Hammam Zriba (Z2) and Jalta (J2)). The abundant minerals in these soils are quartz, calcite and clays. These soils contain significant PTE amounts compared to the local geochemical background (LGB). The important concentrations of Pb, Zn, Cd, As and Sb are, respectively, in the order of 17,350 mg·kg−1 in B1, 37,000 mg·kg−1 in G7, 205 mg·kg−1 in G7, 683 mg·kg−1 in B1 and 145 mg·kg−1 in B1. Kinetic leaching tests were conducted with a mixture of low molecular weight organic acids (LMWAOs) for increasing times up to 16 h (initial pH = 2.8) to study the mobility of PTE in the rhizospheric soils. The results showed an increase in the pH of the solution (2.8) to values up to neutrality together with the increase in Ca and Mg concentrations in the leachate, resulting from the dissolution of carbonates (calcite and dolomite). Additionally, leaching tests showed important extractions of Cd and Zn (25% for Cd and 11% for Zn). Pb was also mobilized but to a lesser extent (5%). The extractability of metalloids (As and Sb) was, in contrast, relatively low, except for Jebel Hallouf and Sidi Bouaouane soils, with an extraction percentage of no more than 1% for Sb and 0.1% for As, respectively. The mobility of Zn, Pb and Cd was thought to be controlled by both the solubility of their host minerals (e.g., sphalerite, hemimorphite, cerussite and jordanite) and the high pH. In contrast, As and Sb mobility was dependent on secondary carrier phases such as iron oxyhydroxides.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference96 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3