Author:
Wang Qian,Tang Xiaobin,Zeng Weichen,Wang Feng,Gong Weijia,Chen Jingyuan,Wang Jinlong,Li Guibai,Liang Heng
Abstract
Biological activated carbon (BAC) biofilter coupling ultrafiltration (UF) is a promising process for the treatment of river water contaminated by pharmaceutical and personal care products (PPCPs). However, the pilot-scale study should be conducted to reveal the long-term removal performance and the respective contributions of BAC and UF. In this study, a BAC-UF system with treatment capacity of 0.16 m3 h−1 was operated for 130 days. The water quality was analyzed in terms of CODMn, UV254, NH4+-N, and PPCPs. The results showed that both BAC and UF were related to the removal of organic matter (CODMn and UV254), achieving the removals of 56.00% and 55.25%, respectively. Similarly, BAC and UF were both relevant to the removal effects of ammonia nitrogen, nitrite, and nitrate. Moreover, the BAC-UF process was featured with a high efficiency in the removal of PPCPs, and the average removal of total PPCPs reached 47.84%, especially anhydroerythromycin, sulfachloropyridazine, sulfadiazine, trimethoprim, and caffeine. Besides, it was found that the BAC unit played a key role in PPCPs removal and the UF unit also degraded them by the biomass on UF membranes. Therefore, this study proved the removal performance of BAC-UF for treating popular pollutants from river water, and the BAC-UF process in this work can be considered as a feasible method of producing clean drinking water.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
State Key Laboratory of Urban Water Resource and Environment
China Postdoctoral Science Foundation
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献