Author:
Wang Zexin,Wang Yingxun,Cai Zhihao,Zhao Jiang,Liu Ningjun,Zhao Yanqi
Abstract
This paper proposes a unified attitude controller based on the modified linear active disturbance rejection control (LADRC) for a dual-tiltrotor unmanned aerial vehicle (UAV) with cyclic pitch to achieve accurate attitude control despite its nonlinear and time-varying characteristics during flight mode transitions. The proposed control algorithm has higher robustness against model mismatch compared with the model-based control algorithms. The modified LADRC utilizes the state feedbacks from the onboard sensors like IMU and Pitot tube instead of the mathematical model of the plane. It has less dependency on the accurate dynamics model of the dual-tiltrotor UAV, which can hardly be built. In contrast to the original LADRC, an actuator model is integrated into the modified LADRC to compensate for the non-negligible slow rotor flapping dynamics and servo dynamics. This modification eliminates the oscillation of the original LADRC when applied on the plant with slow-response actuators, such as propeller and rotors of the helicopter. In this way, the stability and performance of the controller are improved. The controller replaces the gain-scheduling or the control logic switching by a unified controller structure, which simplifies the design approach of the controller for different flight modes. The effectiveness of the modified LADRC and the performance of the unified attitude controller are demonstrated in both simulation and flight tests using a dual-tiltrotor UAV. The attitude control error is less than ±4° during the conversion flight. The control rising time in different flight modes is all about 0.5 s, despite the variations in the airspeed and tilt angle. The flight results show that the controller guarantees high control accuracy and uniform control quality in different flight modes.
Funder
Fundamental Research Funds for the Central Universities of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献