Abstract
Endoscopic resection is recommended for gastric neoplasms confined to mucosa or superficial submucosa. The determination of invasion depth is based on gross morphology assessed in endoscopic images, or on endoscopic ultrasound. These methods have limited accuracy and pose an inter-observer variability. Several studies developed deep-learning (DL) algorithms classifying invasion depth of gastric cancers. Nevertheless, these algorithms are intended to be used after definite diagnosis of gastric cancers, which is not always feasible in various gastric neoplasms. This study aimed to establish a DL algorithm for accurately predicting submucosal invasion in endoscopic images of gastric neoplasms. Pre-trained convolutional neural network models were fine-tuned with 2899 white-light endoscopic images. The prediction models were subsequently validated with an external dataset of 206 images. In the internal test, the mean area under the curve discriminating submucosal invasion was 0.887 (95% confidence interval: 0.849–0.924) by DenseNet−161 network. In the external test, the mean area under the curve reached 0.887 (0.863–0.910). Clinical simulation showed that 6.7% of patients who underwent gastrectomy in the external test were accurately qualified by the established algorithm for potential endoscopic resection, avoiding unnecessary operation. The established DL algorithm proves useful for the prediction of submucosal invasion in endoscopic images of gastric neoplasms.
Funder
National Research Foundation of Korea
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献