Three-Dimensional Quantification and Visualization of Leaf Chlorophyll Content in Poplar Saplings under Drought Using SFM-MVS

Author:

Tian Qifei1,Zhang Huichun12,Bian Liming3,Zhou Lei1,Ge Yufeng45

Affiliation:

1. College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China

2. Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China

3. College of Forestry, Nanjing Forestry University, Nanjing 210037, China

4. Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA

5. Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA

Abstract

As global temperatures warm, drought reduces plant yields and is one of the most serious abiotic stresses causing plant losses. The early identification of plant drought is of great significance for making improvement decisions in advance. Chlorophyll is closely related to plant photosynthesis and nutritional status. By tracking the changes in chlorophyll between plant strains, we can identify the impact of drought on a plant’s physiological status, efficiently adjust the plant’s ecosystem adaptability, and achieve optimization of planting management strategies and resource utilization efficiency. Plant three-dimensional reconstruction and three-dimensional character description are current research hot spots in the development of phenomics, which can three-dimensionally reveal the impact of drought on plant structure and physiological phenotypes. This article obtains visible light multi-view images of four poplar varieties before and after drought. Machine learning algorithms were used to establish the regression models between color vegetation indices and chlorophyll content. The model, based on the partial least squares regression (PLSR), reached the best performance, with an R2 of 0.711. The SFM-MVS algorithm was used to reconstruct the plant’s three-dimensional point cloud and perform color correction, point cloud noise reduction, and morphological calibration. The trained PLSR chlorophyll prediction model was combined with the point cloud color information, and the point cloud color was re-rendered to achieve three-dimensional digitization of plant chlorophyll content. Experimental research found that under natural growth conditions, the chlorophyll content of poplar trees showed a gradient distribution state with gradually increasing values from top to bottom; after being given a short period of mild drought stress, the chlorophyll content accumulated. Compared with the value before stress, it has improved, but no longer presents a gradient distribution state. At the same time, after severe drought stress, the chlorophyll value decreased as a whole, and the lower leaves began to turn yellow, wilt and fall off; when the stress intensity was consistent with the duration, the effect of drought on the chlorophyll value was 895 < SY-1 < 110 < 3804. This research provides an effective tool for in-depth understanding of the mechanisms and physiological responses of plants to environmental stress. It is of great significance for improving agricultural and forestry production and protecting the ecological environment. It also provides decision-making for solving plant drought problems caused by global climate change.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Jiangsu Province agricultural science and technology independent innovation fund project

Publisher

MDPI AG

Subject

Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3